[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 504, 17 ]. See Glossary for some
detail.
PS( 36, 28; 3) = PS( 36, 28; 5) = PS( 36, 28; 9)
= PS( 36, 28; 11) = MSZ ( 36, 14, 17, 3) = UG(ATD[504, 29])
= UG(ATD[504, 30]) = MG(Cmap(504,129) { 36, 36| 18}_ 28) = MG(Cmap(504,130) {
36, 36| 18}_ 28)
= MG(Cmap(504,131) { 36, 36| 18}_ 28) = MG(Cmap(504,132) { 36, 36| 18}_ 28) =
HT[504, 15]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 35 | 0 | - | - | - | - | - | - | - | 0 | - | - | - | - |
| 2 | 0 | - | - | 1 | 1 | 1 | - | - | - | - | - | - | - | - |
| 3 | - | - | - | - | - | 0 | 0 | 0 | - | - | 0 | - | - | - |
| 4 | - | 35 | - | - | - | - | - | - | - | 3 | 1 3 | - | - | - |
| 5 | - | 35 | - | - | - | - | 35 | - | - | - | - | - | 1 | 1 |
| 6 | - | 35 | 0 | - | - | - | 33 | - | - | - | - | 35 | - | - |
| 7 | - | - | 0 | - | 1 | 3 | - | - | - | - | - | 1 | - | - |
| 8 | - | - | 0 | - | - | - | - | 1 35 | 1 | - | - | - | - | - |
| 9 | - | - | - | - | - | - | - | 35 | - | - | 3 | 3 | 35 | - |
| 10 | 0 | - | - | 33 | - | - | - | - | - | - | - | - | 33 | 35 |
| 11 | - | - | 0 | 33 35 | - | - | - | - | 33 | - | - | - | - | - |
| 12 | - | - | - | - | - | 1 | 35 | - | 33 | - | - | - | - | 33 |
| 13 | - | - | - | - | 35 | - | - | - | 1 | 3 | - | - | - | 35 |
| 14 | - | - | - | - | 35 | - | - | - | - | 1 | - | 3 | 1 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 35 | - | - | - | - | - | - | - | - | 0 | - | - | - | 0 |
| 2 | - | - | - | - | 0 | - | - | - | - | 0 | 0 | 0 | - | - |
| 3 | - | - | - | - | 0 | - | - | 0 | 0 | - | - | - | - | 2 |
| 4 | - | - | - | - | 34 | 0 | - | - | 2 | - | - | - | - | 2 |
| 5 | - | 0 | 0 | 2 | - | - | - | - | 3 | - | - | - | - | - |
| 6 | - | - | - | 0 | - | - | - | - | - | - | - | - | 33 35 | 35 |
| 7 | - | - | - | - | - | - | - | 2 | - | 34 | 0 | - | 0 | - |
| 8 | - | - | 0 | - | - | - | 34 | 1 35 | - | - | - | - | - | - |
| 9 | - | - | 0 | 34 | 33 | - | - | - | - | - | - | 1 | - | - |
| 10 | 0 | 0 | - | - | - | - | 2 | - | - | - | - | 3 | - | - |
| 11 | - | 0 | - | - | - | - | 0 | - | - | - | - | 35 | 33 | - |
| 12 | - | 0 | - | - | - | - | - | - | 35 | 33 | 1 | - | - | - |
| 13 | - | - | - | - | - | 1 3 | 0 | - | - | - | 3 | - | - | - |
| 14 | 0 | - | 34 | 34 | - | 1 | - | - | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | - | 0 | 0 | 0 | 0 |
| 2 | - | - | 0 | 72 | 48 | 24 |
| 3 | 0 | 0 | - | - | 1 | 49 |
| 4 | 0 | 12 | - | - | 25 | 37 |
| 5 | 0 | 36 | 83 | 59 | - | - |
| 6 | 0 | 60 | 35 | 47 | - | - |