[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 504, 57 ]. See Glossary for some
detail.
PL(MC3( 6, 42, 1, 13, 29, 0, 1), [6^42, 14^18]) = PL(ATD[ 9, 1]#DCyc[
14]) = PL(ATD[ 9, 1]#ATD[ 42, 5])
= PL(ATD[ 18, 1]#DCyc[ 7]) = PL(ATD[ 18, 1]#DCyc[ 14]) = PL(ATD[ 18,
1]#ATD[ 21, 3])
= PL(ATD[ 18, 1]#ATD[ 42, 5]) = PL(ATD[ 21, 3]#DCyc[ 6]) = PL(ATD[ 42,
5]#DCyc[ 3])
= PL(ATD[ 42, 5]#DCyc[ 6]) = PL(CSI(DW( 3, 3)[ 6^ 3], 14)) = PL(CSI(DW(
6, 3)[ 6^ 6], 7))
= PL(CSI(DW( 6, 3)[ 6^ 6], 14)) = BGCG(DW( 6, 3), C_ 14, {3, 3', 4'}) =
PL(CSI(C_ 21(1, 8)[ 14^ 3], 6))
= PL(CSI(C_ 42(1, 13)[ 14^ 6], 3)) = PL(CSI(C_ 42(1, 13)[ 14^ 6], 6)) =
BGCG(C_ 42(1, 13), C_ 6, {1', 2, 2'})
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 35 | 0 35 | - | - | - | - |
2 | - | - | - | - | - | - | 15 | 21 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | 1 | 7 | 0 | - | 0 | - |
4 | - | - | - | - | - | - | - | - | 22 | 0 | 28 | 0 |
5 | - | - | - | - | - | - | - | - | 8 | 0 | 14 | 0 |
6 | - | - | - | - | - | - | - | - | - | 21 28 | - | 15 22 |
7 | 0 7 | 27 | 41 | - | - | - | - | - | - | - | - | - |
8 | 0 7 | 21 | 35 | - | - | - | - | - | - | - | - | - |
9 | - | 0 | 0 | 20 | 34 | - | - | - | - | - | - | - |
10 | - | - | - | 0 | 0 | 14 21 | - | - | - | - | - | - |
11 | - | 0 | 0 | 14 | 28 | - | - | - | - | - | - | - |
12 | - | - | - | 0 | 0 | 20 27 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | - | 0 |
2 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
3 | - | - | - | - | - | - | - | - | 0 1 | - | - | 0 13 |
4 | - | - | - | - | - | - | - | - | - | 29 30 | 0 29 | - |
5 | - | - | - | - | - | - | 41 | 29 | 1 | - | - | 13 |
6 | - | - | - | - | - | - | 0 | 30 | - | 2 | 14 | - |
7 | 0 | 0 | - | - | 1 | 0 | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 13 | 12 | - | - | - | - | - | - |
9 | 0 | - | 0 41 | - | 41 | - | - | - | - | - | - | - |
10 | - | 0 | - | 12 13 | - | 40 | - | - | - | - | - | - |
11 | - | 0 | - | 0 13 | - | 28 | - | - | - | - | - | - |
12 | 0 | - | 0 29 | - | 29 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 9 | - | - | - |
2 | - | - | - | - | - | - | 28 | 28 | 0 9 | - | - | - |
3 | - | - | - | - | - | - | 15 | 33 | - | 0 | 0 | - |
4 | - | - | - | - | - | - | 1 | 19 | - | 0 | 0 | - |
5 | - | - | - | - | - | - | - | - | - | 10 | 28 | 0 9 |
6 | - | - | - | - | - | - | - | - | - | 38 | 14 | 0 9 |
7 | 0 | 14 | 27 | 41 | - | - | - | - | - | - | - | - |
8 | 0 | 14 | 9 | 23 | - | - | - | - | - | - | - | - |
9 | 0 33 | 0 33 | - | - | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 | 32 | 4 | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 14 | 28 | - | - | - | - | - | - |
12 | - | - | - | - | 0 33 | 0 33 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | - | - | 1 | 0 | 13 | 0 |
4 | - | - | - | - | - | - | - | - | 0 | 1 | 0 | 13 |
5 | - | - | - | - | - | - | 41 | 29 | 1 | - | 13 | - |
6 | - | - | - | - | - | - | 41 | 29 | - | 1 | - | 13 |
7 | 0 | 0 | - | - | 1 | 1 | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 13 | 13 | - | - | - | - | - | - |
9 | - | 0 | 41 | 0 | 41 | - | - | - | - | - | - | - |
10 | 0 | - | 0 | 41 | - | 41 | - | - | - | - | - | - |
11 | - | 0 | 29 | 0 | 29 | - | - | - | - | - | - | - |
12 | 0 | - | 0 | 29 | - | 29 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 1 | - | 0 13 | - |
2 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
3 | - | - | - | - | - | - | - | - | - | 40 41 | - | 28 41 |
4 | - | - | - | - | - | - | 0 | 0 | 1 | - | 13 | - |
5 | - | - | - | - | - | - | 0 | 12 | - | 40 | - | 28 |
6 | - | - | - | - | - | - | 40 41 | 11 40 | - | - | - | - |
7 | - | - | - | 0 | 0 | 1 2 | - | - | - | - | - | - |
8 | - | - | - | 0 | 30 | 2 31 | - | - | - | - | - | - |
9 | 0 41 | 0 | - | 41 | - | - | - | - | - | - | - | - |
10 | - | 0 | 1 2 | - | 2 | - | - | - | - | - | - | - |
11 | 0 29 | 0 | - | 29 | - | - | - | - | - | - | - | - |
12 | - | 0 | 1 14 | - | 14 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
2 | - | - | - | - | - | - | 14 | 14 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | - | - | 14 | 0 | 38 | 0 |
4 | - | - | - | - | - | - | - | - | 28 | 0 | 10 | 0 |
5 | - | - | - | - | - | - | 1 | 19 | - | 14 | - | 38 |
6 | - | - | - | - | - | - | 38 | 14 | - | 23 | - | 5 |
7 | 0 | 28 | - | - | 41 | 4 | - | - | - | - | - | - |
8 | 0 | 28 | - | - | 23 | 28 | - | - | - | - | - | - |
9 | 0 | 0 | 28 | 14 | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 | 28 | 19 | - | - | - | - | - | - |
11 | 0 | 0 | 4 | 32 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 4 | 37 | - | - | - | - | - | - |