[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 504, 58 ]. See Glossary for some
detail.
PL(MC3( 6, 42, 1, 22, 29, 12, 1), [4^63, 42^6]) = PL(ATD[ 6, 1]#DCyc[
21]) = PL(ATD[ 6, 1]#ATD[ 63, 8])
= XI(Rmap(252,169) { 6, 84| 4}_ 21) = PL(CSI(Octahedron[ 4^ 3], 21)) =
BGCG(W( 6, 2), C_ 21, 1)
= PL(CS(DW( 21, 3)[ 42^ 3], 0)) = BGCG(Pr_ 84( 1, 61, 65, 41); K1;3)
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | - | - | - | - | 0 1 | - | 0 22 | - |
3 | - | - | - | - | - | - | 0 | 0 | - | 4 | - | 25 |
4 | - | - | - | - | - | - | - | - | - | 4 5 | - | 5 25 |
5 | - | - | - | - | - | - | 4 | 25 | 5 | - | 26 | - |
6 | - | - | - | - | - | - | 4 5 | 5 25 | - | - | - | - |
7 | - | - | 0 | - | 38 | 37 38 | - | - | - | - | - | - |
8 | - | - | 0 | - | 17 | 17 37 | - | - | - | - | - | - |
9 | 0 | 0 41 | - | - | 37 | - | - | - | - | - | - | - |
10 | 0 | - | 38 | 37 38 | - | - | - | - | - | - | - | - |
11 | 0 | 0 20 | - | - | 16 | - | - | - | - | - | - | - |
12 | 0 | - | 17 | 17 37 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | - | - | - | - | - | 0 | 0 | 0 | - | - | 0 |
3 | - | - | - | - | - | - | - | - | 1 | 0 | 0 | 22 |
4 | - | - | - | - | - | - | - | - | 0 | 34 | 13 | 0 |
5 | - | - | - | - | - | - | 29 | 8 | 1 | - | - | 22 |
6 | - | - | - | - | - | - | 41 | 20 | - | 34 | 13 | - |
7 | 0 | 0 | - | - | 13 | 1 | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 34 | 22 | - | - | - | - | - | - |
9 | - | 0 | 41 | 0 | 41 | - | - | - | - | - | - | - |
10 | 0 | - | 0 | 8 | - | 8 | - | - | - | - | - | - |
11 | 0 | - | 0 | 29 | - | 29 | - | - | - | - | - | - |
12 | - | 0 | 20 | 0 | 20 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | - | 0 |
2 | - | - | - | - | - | - | 22 | 22 | 0 | - | - | 0 |
3 | - | - | - | - | - | - | - | - | 22 | 0 | 0 | 1 |
4 | - | - | - | - | - | - | - | - | 2 | 0 | 0 | 23 |
5 | - | - | - | - | - | - | 35 | 14 | - | 22 | 1 | - |
6 | - | - | - | - | - | - | 35 | 14 | - | 2 | 23 | - |
7 | 0 | 20 | - | - | 7 | 7 | - | - | - | - | - | - |
8 | 0 | 20 | - | - | 28 | 28 | - | - | - | - | - | - |
9 | 0 | 0 | 20 | 40 | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 | 20 | 40 | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 41 | 19 | - | - | - | - | - | - |
12 | 0 | 0 | 41 | 19 | - | - | - | - | - | - | - | - |