[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 504, 134 ]. See Glossary for some
detail.
PL(ATD[ 18, 2]#DCyc[ 7]) = PL(ATD[ 18, 2]#DCyc[ 14]) = XI(Rmap(252, 9)
{ 4, 28| 6}_ 42)
= XI(Rmap(252, 31) { 6, 28| 6}_ 28) = PL(CSI(DW( 6, 3)[ 6^ 6], 7)) =
PL(CSI(DW( 6, 3)[ 6^ 6], 14))
= BGCG(DW( 6, 3), C_ 14, {1', 2'}) = BGCG(C_ 42(1, 13), C_ 6, 1) = BGCG(PS(
6, 21; 8); K2;3)
= BGCG(PS( 6, 84; 29); K1;{1, 5}) = BGCG(UG(ATD[252,26]); K1;3)
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 0 | 0 | 0 35 | - | - |
2 | - | - | - | - | - | - | - | 6 | 6 | 0 35 | - | - |
3 | - | - | - | - | - | - | - | - | 26 | - | 0 35 | 0 |
4 | - | - | - | - | - | - | 0 35 | 6 | - | - | - | 1 |
5 | - | - | - | - | - | - | - | - | 32 | - | 0 35 | 6 |
6 | - | - | - | - | - | - | 29 36 | 6 | - | - | - | 1 |
7 | - | - | - | 0 7 | - | 6 13 | - | - | - | - | - | - |
8 | 0 | 36 | - | 36 | - | 36 | - | - | - | - | - | - |
9 | 0 | 36 | 16 | - | 10 | - | - | - | - | - | - | - |
10 | 0 7 | 0 7 | - | - | - | - | - | - | - | - | - | - |
11 | - | - | 0 7 | - | 0 7 | - | - | - | - | - | - | - |
12 | - | - | 0 | 41 | 36 | 41 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 1 | - | - |
2 | - | - | - | - | - | - | 0 | - | 12 | 0 13 | - | - |
3 | - | - | - | - | - | - | 24 | 0 | 38 | - | - | 0 |
4 | - | - | - | - | - | - | - | 13 | - | - | 0 1 | 29 |
5 | - | - | - | - | - | - | 24 | 12 | 8 | - | - | 0 |
6 | - | - | - | - | - | - | - | 13 | - | - | 0 13 | 41 |
7 | 0 | 0 | 18 | - | 18 | - | - | - | - | - | - | - |
8 | - | - | 0 | 29 | 30 | 29 | - | - | - | - | - | - |
9 | 0 | 30 | 4 | - | 34 | - | - | - | - | - | - | - |
10 | 0 41 | 0 29 | - | - | - | - | - | - | - | - | - | - |
11 | - | - | - | 0 41 | - | 0 29 | - | - | - | - | - | - |
12 | - | - | 0 | 13 | 0 | 1 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 0 | 6 | 0 | 6 | - | - |
3 | - | - | - | - | - | - | 12 | 40 | - | - | 0 | 0 |
4 | - | - | - | - | - | - | 9 | 1 | - | - | 39 | 3 |
5 | - | - | - | - | - | - | - | - | 31 34 | 6 9 | - | - |
6 | - | - | - | - | - | - | - | - | - | - | 23 26 | 12 15 |
7 | 0 | 0 | 30 | 33 | - | - | - | - | - | - | - | - |
8 | 0 | 36 | 2 | 41 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 8 11 | - | - | - | - | - | - | - |
10 | 0 | 36 | - | - | 33 36 | - | - | - | - | - | - | - |
11 | - | - | 0 | 3 | - | 16 19 | - | - | - | - | - | - |
12 | - | - | 0 | 39 | - | 27 30 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 0 | - | 36 | 36 | 0 | - |
3 | - | - | - | - | - | - | - | 0 | - | 16 | 30 | 0 |
4 | - | - | - | - | - | - | - | 36 | - | 10 | 30 | 0 |
5 | - | - | - | - | - | - | 30 | 7 | 2 | - | - | 21 |
6 | - | - | - | - | - | - | 30 | 1 | 38 | - | - | 21 |
7 | 0 | 0 | - | - | 12 | 12 | - | - | - | - | - | - |
8 | - | - | 0 | 6 | 35 | 41 | - | - | - | - | - | - |
9 | 0 | 6 | - | - | 40 | 4 | - | - | - | - | - | - |
10 | 0 | 6 | 26 | 32 | - | - | - | - | - | - | - | - |
11 | 0 | 0 | 12 | 12 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 21 | 21 | - | - | - | - | - | - |