[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 510, 6 ]. See Glossary for some
detail.
PS( 34, 15; 4) = PS( 34, 30; 11) = PS( 10, 51; 16)
= PS( 10,102; 35) = PS( 6, 85; 16) = PS( 6,170; 69)
= BC_255( 0, 3,190,238) = BC_255( 0, 68, 3, 20) = Pr_170( 1,138, 2, 69)
= UG(ATD[510, 10]) = UG(ATD[510, 11]) = UG(ATD[510, 12])
= MG(Rmap(510, 13) { 30,102| 6}_170) = DG(Rmap(510, 13) { 30,102| 6}_170) =
DG(Rmap(510, 14) {102, 30| 6}_170)
= DG(Rmap(510, 15) { 30,170| 10}_102) = BGCG(C_ 15(1, 4), C_ 17, 1) = BGCG(C_
51(1, 16), C_ 5, 1)
= BGCG(C_ 85(1, 16), C_ 3, 1) = AT[510, 7]
Cyclic coverings
1 | 2 | |
---|---|---|
1 | - | 0 119 125 159 |
2 | 0 96 130 136 | - |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
1 | 1 101 | - | - | 0 70 | - |
2 | - | - | 0 70 | - | 0 100 |
3 | - | 0 32 | - | 33 35 | - |
4 | 0 32 | - | 67 69 | - | - |
5 | - | 0 2 | - | - | 35 67 |
1 | 2 | 3 | |
---|---|---|---|
1 | 1 169 | - | 0 32 |
2 | - | 69 101 | 134 136 |
3 | 0 138 | 34 36 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 29 | 0 22 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2 | 0 8 | - | 17 19 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | - | 11 13 | - | 16 24 | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | - | - | 6 14 | - | 24 26 | - | - | - | - | - | - | - | - | - | - | - | - |
5 | - | - | - | 4 6 | - | 16 24 | - | - | - | - | - | - | - | - | - | - | - |
6 | - | - | - | - | 6 14 | - | 24 26 | - | - | - | - | - | - | - | - | - | - |
7 | - | - | - | - | - | 4 6 | - | 16 24 | - | - | - | - | - | - | - | - | - |
8 | - | - | - | - | - | - | 6 14 | - | 24 26 | - | - | - | - | - | - | - | - |
9 | - | - | - | - | - | - | - | 4 6 | - | 16 24 | - | - | - | - | - | - | - |
10 | - | - | - | - | - | - | - | - | 6 14 | - | 24 26 | - | - | - | - | - | - |
11 | - | - | - | - | - | - | - | - | - | 4 6 | - | 16 24 | - | - | - | - | - |
12 | - | - | - | - | - | - | - | - | - | - | 6 14 | - | 24 26 | - | - | - | - |
13 | - | - | - | - | - | - | - | - | - | - | - | 4 6 | - | 16 24 | - | - | - |
14 | - | - | - | - | - | - | - | - | - | - | - | - | 6 14 | - | 24 26 | - | - |
15 | - | - | - | - | - | - | - | - | - | - | - | - | - | 4 6 | - | 16 24 | - |
16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 6 14 | - | 24 26 |
17 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 4 6 | 11 19 |