C4graphConstructions for C4[ 512, 4 ] = {4,4}_[32,8]

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 4 ]. See Glossary for some detail.

{4, 4}_[ 32, 8] = PS( 64, 16; 1) = PS( 64, 16; 7)

      = PS( 16, 64; 1) = PS( 16, 64; 31) = UG(ATD[512, 147])

      = UG(ATD[512, 148]) = UG(ATD[512, 149]) = MG(Rmap(512,969) { 16, 64| 8}_ 64)

      = DG(Rmap(512,969) { 16, 64| 8}_ 64) = MG(Rmap(512,979) { 16, 64| 2}_ 64) = DG(Rmap(512,979) { 16, 64| 2}_ 64)

      = DG(Rmap(512,984) { 64, 16| 8}_ 64) = DG(Rmap(512,999) { 64, 16| 2}_ 64) = AT[512, 190]

     

Cyclic coverings

mod 64:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 1
3 0 63 - 0 63 - - -
4 - 0 0 - 0 63 - -
5 - - 1 0 - 0 21 -
6 - - - 1 0 - 22 22
7 0 - - - 43 42 - 1
8 0 63 - - - 42 63 -

mod 64:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 1
3 0 63 - 0 63 - - -
4 - 0 0 - 0 63 - -
5 - - 1 0 - 0 5 -
6 - - - 1 0 - 6 6
7 0 - - - 59 58 - 1
8 0 63 - - - 58 63 -

mod 64:
12345678
1 1 63 0 - - - - - 0
2 0 1 63 0 - - - - -
3 - 0 1 63 0 - - - -
4 - - 0 1 63 0 - - -
5 - - - 0 1 63 0 - -
6 - - - - 0 1 63 0 -
7 - - - - - 0 1 63 8
8 0 - - - - - 56 1 63

mod 64:
12345678
1 - 0 - - 0 42 - - 0
2 0 - 0 - - 0 42 - -
3 - 0 - 0 - - 0 42 -
4 - - 0 - 1 - - 1 23
5 0 22 - - 63 - 0 - -
6 - 0 22 - - 0 - 0 -
7 - - 0 22 - - 0 - 23
8 0 - - 41 63 - - 41 -

mod 64:
12345678
1 1 63 0 2 - - - - - -
2 0 62 - 0 2 - - - - -
3 - 0 62 - 0 2 - - - -
4 - - 0 62 - 0 2 - - -
5 - - - 0 62 - 0 2 - -
6 - - - - 0 62 - 0 2 -
7 - - - - - 0 62 - 0 2
8 - - - - - - 0 62 1 63