C4graphConstructions for C4[ 512, 7 ] = {4,4}_<66,62>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 7 ]. See Glossary for some detail.

{4, 4}_< 66, 62> = MPS(128, 8; 1) = MPS(128, 8; 3)

      = PS( 4,256; 63) = PS( 4,256; 65) = MPS( 4,256; 1)

      = MPS( 4,256;127) = R_256( 2, 129) = R_256(254, 129)

      = R_256(126, 1) = R_256(130, 1) = PL(MC3( 4, 64, 1, 33, 33, 30, 1), [4^64, 128^2])

      = PL(MC3( 4, 64, 1, 33, 33, 62, 1), [4^64, 128^2]) = PL(MC3( 8, 32, 1, 17, 17, 14, 1), [4^64, 128^2]) = PL(MC3( 8, 32, 1, 17, 17, 30, 1), [4^64, 128^2])

      = PL(MC3( 16, 16, 1, 9, 9, 6, 1), [4^64, 128^2]) = PL(MC3( 16, 16, 1, 9, 9, 14, 1), [4^64, 128^2]) = PL(MC3( 32, 8, 1, 5, 5, 2, 1), [4^64, 128^2])

      = PL(MC3( 32, 8, 1, 5, 5, 6, 1), [4^64, 128^2]) = PL(MBr( 2, 128; 63)) = PL(BC_128({ 0, 64 }, { 1, 63 })

      = UG(ATD[512, 144]) = UG(ATD[512, 145]) = UG(ATD[512, 146])

      = MG(Rmap(512,648) { 8,256| 2}_256) = DG(Rmap(512,648) { 8,256| 2}_256) = MG(Rmap(512,649) { 8,256| 4}_256)

      = DG(Rmap(512,649) { 8,256| 4}_256) = DG(Rmap(512,650) {256, 8| 2}_256) = DG(Rmap(512,651) {256, 8| 4}_256)

      = BGCG(W( 64, 2); K2;{5, 6}) = AT[512, 147]

Cyclic coverings

mod 256:
12
1 1 255 0 130
2 0 126 1 255

mod 256:
12
1 1 255 0 2
2 0 254 127 129