C4graphConstructions for C4[ 512, 17 ] = PS(16,64;15)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 17 ]. See Glossary for some detail.

PS( 16, 64; 15) = PS( 16, 64; 17) = MSY( 8, 64, 33, 8)

      = MSZ ( 16, 32, 7, 15) = MC3( 8, 64, 1, 23, 33, 40, 1) = UG(ATD[512, 177])

      = UG(ATD[512, 178]) = UG(ATD[512, 179]) = MG(Rmap(512,971) { 16, 64| 8}_ 64)

      = DG(Rmap(512,971) { 16, 64| 8}_ 64) = MG(Rmap(512,978) { 16, 64| 4}_ 64) = DG(Rmap(512,978) { 16, 64| 4}_ 64)

      = DG(Rmap(512,987) { 64, 16| 4}_ 64) = DG(Rmap(512,989) { 64, 16| 8}_ 64) = AT[512, 189]

     

Cyclic coverings

mod 64:
12345678
1 1 63 0 - - - - - 0
2 0 31 33 31 - - - - -
3 - 33 1 63 63 - - - -
4 - - 1 31 33 31 - - -
5 - - - 33 1 63 63 - -
6 - - - - 1 31 33 31 -
7 - - - - - 33 1 63 45
8 0 - - - - - 19 31 33

mod 64:
12345678
1 - - 0 0 - 0 0 -
2 - - - 32 0 - 0 0
3 0 - - - 1 51 - 33
4 0 32 - - - 19 51 -
5 - 0 63 - - - 51 19
6 0 - 13 45 - - - 1
7 0 0 - 13 13 - - -
8 - 0 31 - 45 63 - -

mod 64:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 33 - - - 33
3 0 63 - 1 33 - - -
4 - 31 63 - 33 1 - -
5 - - 31 31 - 1 51 -
6 - - - 63 63 - 51 19
7 0 - - - 13 13 - 1
8 0 31 - - - 45 63 -

mod 64:
12345678
1 - - - 0 0 26 0 - -
2 - - - - 0 6 32 0 -
3 - - - - - 6 6 32 0
4 0 - - - - - 1 1 27
5 0 38 0 - - - - - 33
6 0 32 58 58 - - - - -
7 - 0 32 58 63 - - - -
8 - - 0 37 63 31 - - -

mod 64:
12345678
1 1 63 0 34 - - - - - -
2 0 30 - 0 62 - - - - -
3 - 0 2 - 18 48 - - - -
4 - - 16 46 - 30 32 - - -
5 - - - 32 34 - 16 50 - -
6 - - - - 14 48 - 0 62 -
7 - - - - - 0 2 - 18 48
8 - - - - - - 16 46 1 63