C4graphConstructions for C4[ 512, 29 ] = PL(MSY(4,64,33,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 29 ]. See Glossary for some detail.

PL(MSY( 4, 64, 33, 0)) = PL(MSY( 4, 64, 31, 0)) = PL(MC3( 4, 64, 1, 63, 31, 0, 1), [4^64, 64^4])

      = PL(MC3( 4, 64, 1, 63, 33, 0, 1), [4^64, 64^4]) = PL(KE_ 64( 1, 33, 2, 33, 1), [4^64, 64^4]) = PL(Curtain_ 64( 1, 31, 33, 63, 64), [4^64, 64^4])

      = PL(Br( 4, 64; 31)) = PL(ATD[ 64, 30]#DCyc[ 4]) = PL(CS(W( 32, 2)[ 64^ 2], 0))

      = BGCG(W( 32, 2), C_ 4, {2', 3'})

Cyclic coverings

mod 64:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 31 0 31 -
3 - - - - - - 0 1 0 1
4 - - - - 0 31 - - 0 31
5 0 63 - - 0 33 - - - -
6 0 63 0 33 - - - - - -
7 - 0 33 0 63 - - - - -
8 - - 0 63 0 33 - - - -

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - - 0 1 33 34 -
4 - - - - 0 1 - - 33 34
5 0 0 - 0 63 - - - -
6 0 0 0 63 - - - - -
7 0 62 30 31 - - - - -
8 0 62 - 30 31 - - - -

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 33 34
4 - - - - 63 0 33 32
5 0 0 63 1 - - - -
6 0 0 0 0 - - - -
7 0 62 31 31 - - - -
8 0 62 30 32 - - - -

mod 64:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 0 31 30 -
3 - - - - 1 - 63 0 1
4 - - - - 31 - 63 0 31
5 0 0 63 33 - - - -
6 0 63 0 33 - - - - - -
7 0 34 1 1 - - - -
8 - - 0 63 0 33 - - - -

mod 64:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 0 31 0 -
3 - - - - - 31 0 63 29
4 - - - - 61 - 63 29 60
5 0 63 0 - 3 - - - -
6 0 0 33 33 - - - - -
7 - 0 0 1 1 - - - -
8 0 - 35 4 35 - - - -