C4graphConstructions for C4[ 512, 30 ] = PL(MSY(4,64,33,32))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 30 ]. See Glossary for some detail.

PL(MSY( 4, 64, 33, 32)) = PL(MSY( 4, 64, 31, 32)) = PL(MSY( 32, 8, 3, 4))

      = PL(MSY( 32, 8, 5, 4)) = PL(MC3( 4, 64, 1, 31, 33, 32, 1), [8^32, 64^4]) = PL(MC3( 32, 8, 1, 3, 5, 4, 1), [8^32, 64^4])

      = PL(KE_ 64( 1, 33, 2, 1, 31), [8^32, 64^4]) = PL(Curtain_ 64( 1, 31, 32, 33, 63), [8^32, 64^4]) = PL(MBr( 32, 8; 3))

      = PL(MBr( 4, 64; 31))

Cyclic coverings

mod 64:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 31 0 - 30
3 - - - - - 0 0 31 62
4 - - - - - 0 0 1 32
5 0 63 0 33 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 33 0 63 - - - -
8 0 34 2 32 - - - -

mod 64:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 31 0 - 0
3 - - - - 31 - 61 0 63
4 - - - - - 29 28 61 63
5 0 0 33 33 - - - - -
6 0 63 0 - 35 - - - -
7 0 - 3 3 36 - - - -
8 - 0 0 1 1 - - - -

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 34 34
3 - - - - 1 0 33 2
4 - - - - 31 0 33 32
5 0 0 63 33 - - - -
6 0 0 0 0 - - - -
7 0 30 31 31 - - - -
8 0 30 62 32 - - - -

mod 64:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 31 0 31 -
3 - - - - - - 0 1 0 1
4 - - - - 0 31 - - 32 63
5 0 63 - - 0 33 - - - -
6 0 63 0 33 - - - - - -
7 - 0 33 0 63 - - - - -
8 - - 0 63 1 32 - - - -

mod 64:
12345678
1 - - - - 0 1 0 63 - -
2 - - - - 34 0 0 0
3 - - - - 32 0 0 62
4 - - - - - - 0 31 30 63
5 0 63 30 32 - - - - -
6 0 1 0 0 - - - - -
7 - 0 0 0 33 - - - -
8 - 0 2 1 34 - - - -