C4graphConstructions for C4[ 512, 42 ] = PL(LoPr_64(1,32,2,32,1),[4^64,64^4])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 42 ]. See Glossary for some detail.

PL(LoPr_ 64( 1, 32, 2, 32, 1), [4^64, 64^4]) = PL(Curtain_ 64( 1, 32, 29, 30, 62), [4^64, 64^4]) = PL(CS(W( 32, 2)[ 32^ 4], 1))

      = BGCG({4, 4}_< 18, 14>; K2;{1, 3})

Cyclic coverings

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 30 30 0 0
3 - - - - - - 0 1 32 33
4 - - - - 0 33 1 32 - -
5 0 34 - 0 31 - - - -
6 0 34 - 32 63 - - - -
7 0 0 0 63 - - - - -
8 0 0 31 32 - - - - -

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 1 0 33 - -
3 - - - - - - 0 63 0 31
4 - - - - 0 32 34 2
5 0 0 63 - 0 - - - -
6 0 0 31 - 32 - - - -
7 0 - 0 1 30 - - - -
8 0 - 0 33 62 - - - -

mod 64:
12345678
1 - - - - 0 1 - 0 1 -
2 - - - - 32 0 0 0
3 - - - - 32 62 0 62
4 - - - - - 32 33 - 0 1
5 0 63 32 32 - - - - -
6 - 0 2 31 32 - - - -
7 0 63 0 0 - - - - -
8 - 0 2 0 63 - - - -

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 30 30 0 0
3 - - - - - - 0 1 32 33
4 - - - - 0 1 32 33 - -
5 0 34 - 0 63 - - - -
6 0 34 - 31 32 - - - -
7 0 0 0 63 - - - - -
8 0 0 31 32 - - - - -

mod 64:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 1 0 33 - -
3 - - - - - - 0 63 0 31
4 - - - - 0 32 2 34
5 0 0 63 - 0 - - - -
6 0 0 31 - 32 - - - -
7 0 - 0 1 62 - - - -
8 0 - 0 33 30 - - - -

mod 64:
12345678
1 - - - - 0 1 - 0 1 -
2 - - - - 32 0 0 0
3 - - - - 32 62 0 62
4 - - - - - 0 33 - 1 32
5 0 63 32 32 - - - - -
6 - 0 2 0 31 - - - -
7 0 63 0 0 - - - - -
8 - 0 2 32 63 - - - -