[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 512, 43 ]. See Glossary for some
detail.
PL(LoPr_ 64( 1, 32, 14, 32, 1), [4^64, 64^4]) = PL(Curtain_ 64( 1, 32, 13,
30, 62), [4^64, 64^4]) = PL(CS({4, 4}_< 10, 6>[ 32^ 4], 1))
= BGCG({4, 4}_< 20, 12>; K1;{2, 3}) = BGCG(MPS( 32, 16; 3); K1;{1, 3})
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | - | - | 0 63 |
2 | - | - | - | - | 0 | 0 | 0 | 31 |
3 | - | - | - | - | 0 | 46 | 46 | 31 |
4 | - | - | - | - | - | 32 33 | 0 1 | - |
5 | 0 63 | 0 | 0 | - | - | - | - | - |
6 | - | 0 | 18 | 31 32 | - | - | - | - |
7 | - | 0 | 18 | 0 63 | - | - | - | - |
8 | 0 1 | 33 | 33 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 1 | - | 0 33 | - |
3 | - | - | - | - | - | 0 15 | - | 0 47 |
4 | - | - | - | - | 32 | 34 | 0 | 2 |
5 | 0 | 0 63 | - | 32 | - | - | - | - |
6 | 0 | - | 0 49 | 30 | - | - | - | - |
7 | 0 | 0 31 | - | 0 | - | - | - | - |
8 | 0 | - | 0 17 | 62 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 1 | - | 0 33 | - |
3 | - | - | - | - | - | 0 15 | - | 0 47 |
4 | - | - | - | - | 32 | 2 | 0 | 34 |
5 | 0 | 0 63 | - | 32 | - | - | - | - |
6 | 0 | - | 0 49 | 62 | - | - | - | - |
7 | 0 | 0 31 | - | 0 | - | - | - | - |
8 | 0 | - | 0 17 | 30 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | - | 0 63 | - |
2 | - | - | - | - | 33 | 0 | 0 | 0 |
3 | - | - | - | - | 33 | 50 | 0 | 50 |
4 | - | - | - | - | - | 32 63 | - | 0 31 |
5 | 0 63 | 31 | 31 | - | - | - | - | - |
6 | - | 0 | 14 | 1 32 | - | - | - | - |
7 | 0 1 | 0 | 0 | - | - | - | - | - |
8 | - | 0 | 14 | 0 33 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | - | 0 1 | - |
2 | - | - | - | - | 32 | 0 | 0 | 0 |
3 | - | - | - | - | 32 | 14 | 0 | 14 |
4 | - | - | - | - | - | 0 1 | - | 32 33 |
5 | 0 63 | 32 | 32 | - | - | - | - | - |
6 | - | 0 | 50 | 0 63 | - | - | - | - |
7 | 0 63 | 0 | 0 | - | - | - | - | - |
8 | - | 0 | 50 | 31 32 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 46 | 46 | 0 | 0 |
3 | - | - | - | - | - | - | 0 1 | 32 33 |
4 | - | - | - | - | 1 32 | 0 33 | - | - |
5 | 0 | 18 | - | 32 63 | - | - | - | - |
6 | 0 | 18 | - | 0 31 | - | - | - | - |
7 | 0 | 0 | 0 63 | - | - | - | - | - |
8 | 0 | 0 | 31 32 | - | - | - | - | - |