C4graphConstructions for C4[ 512, 119 ] = UG(ATD[512,186])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 119 ]. See Glossary for some detail.

UG(ATD[512, 186]) = UG(ATD[512, 187]) = UG(ATD[512, 188])

      = MG(Rmap(512,974) { 16, 64| 4}_ 64) = DG(Rmap(512,974) { 16, 64| 4}_ 64) = MG(Rmap(512,977) { 16, 64| 8}_ 64)

      = DG(Rmap(512,977) { 16, 64| 8}_ 64) = DG(Rmap(512,985) { 64, 16| 4}_ 64) = DG(Rmap(512,998) { 64, 16| 8}_ 64)

      = AT[512, 192]

Cyclic coverings

mod 64:
12345678
1 1 63 - 0 - - - 0 -
2 - 1 63 - 0 0 - - -
3 0 - - 45 47 - 55 - -
4 - 0 17 19 - - - - 10
5 - 0 - - - - 45 47 38
6 - - 9 - - 1 63 37 -
7 0 - - - 17 19 27 - -
8 - - - 54 26 - - 1 63

mod 64:
12345678
1 - 0 - 0 0 62 - - -
2 0 - - - 1 0 62 - -
3 - - - - - 47 0 0 62
4 0 - - - 61 - 15 17 -
5 0 2 63 - 3 - - - -
6 - 0 2 17 - - - - 50
7 - - 0 47 49 - - - 29
8 - - 0 2 - - 14 35 -

mod 64:
12345678
1 - 0 0 34 0 - - - -
2 0 - - 1 35 - 0 - -
3 0 30 - - - 47 - 47 -
4 0 29 63 - - - 28 - -
5 - - 17 - - - 1 35 0
6 - 0 - 36 - - - 17 47
7 - - 17 - 29 63 - - 28
8 - - - - 0 17 47 36 -

mod 64:
12345678
1 1 63 - - 0 0 - - -
2 - 31 33 0 - - - - 0
3 - 0 - - 17 19 57 - -
4 0 - - - - - 0 49 51
5 0 - 45 47 - - - 60 -
6 - - 7 - - 31 33 - 11
7 - - - 0 4 - 1 63 -
8 - 0 - 13 15 - 53 - -