C4graphConstructions for C4[ 512, 124 ] = UG(ATD[512,207])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 512, 124 ]. See Glossary for some detail.

UG(ATD[512, 207]) = UG(ATD[512, 208]) = UG(ATD[512, 209])

      = MG(Rmap(512,972) { 16, 64| 8}_ 64) = DG(Rmap(512,972) { 16, 64| 8}_ 64) = MG(Rmap(512,975) { 16, 64| 4}_ 64)

      = DG(Rmap(512,975) { 16, 64| 4}_ 64) = DG(Rmap(512,994) { 64, 16| 4}_ 64) = DG(Rmap(512,995) { 64, 16| 8}_ 64)

      = AT[512, 191]

Cyclic coverings

mod 64:
12345678
1 - - 0 0 - - 0 2 -
2 - - 62 2 - - - 0 2
3 0 2 - 1 35 - - - -
4 0 62 29 63 - - - - -
5 - - - - - 0 30 9 43
6 - - - - 0 34 - 12 42
7 0 62 - - - 55 52 - -
8 - 0 62 - - 21 22 - -

mod 64:
12345678
1 1 63 - - - - - 0 0
2 - 31 33 - - - - 62 2
3 - - 31 33 - 0 0 - -
4 - - - 1 63 2 62 - -
5 - - 0 62 - - 6 40 -
6 - - 0 2 - - - 12 42
7 0 2 - - 24 58 - - -
8 0 62 - - - 22 52 - -

mod 64:
12345678
1 - - 0 - - 0 0 54 -
2 - - - 0 0 - - 0 54
3 0 - - - - 1 43 - 1
4 - 0 - - 11 33 - 33 -
5 - 0 - 31 53 - - 21 -
6 0 - 21 63 - - - - 53
7 0 10 - - 31 43 - - -
8 - 0 10 63 - - 11 - -

mod 64:
12345678
1 - 0 30 - - 0 - 0 -
2 0 34 - - - - 1 - 1
3 - - - 0 30 21 - 57 -
4 - - 0 34 - - 54 - 26
5 0 - 43 - 31 33 - - -
6 - 63 - 10 - 1 63 - -
7 0 - 7 - - - 1 63 -
8 - 63 - 38 - - - 31 33