Click Number in First Column for  .pdf  of preprint/reprint.

 

1.

Hineman, Jay L.; Neuberger, John M. GNGA for general regions: semilinear elliptic PDE and crossing eigenvalues. Commun. Nonlinear Sci. Numer. Simul. 12 (2007), no. 4, 447--464.

 

2.

Neuberger, John M.; Sieben, N‡ndor; Swift, James W. Symmetry and automated branch following for a semilinear elliptic PDE on a fractal region. SIAM J. Appl. Dyn. Syst. 5 (2006), no. 3, 476--507 (electronic).

 

3.

Neuberger, John M. Nonlinear elliptic partial difference equations on graphs. Experiment. Math. 15 (2006), no. 1, 91--107.

 

4.

Neuberger, John M.; Sieben, N‡ndor; Swift, James W. Computing eigenfunctions on the Koch snowflake: a new grid and symmetry. J. Comput. Appl. Math. 191 (2006), no. 1, 126--142.

 

5.

Neuberger, John M. GNGA: recent progress and open problems for semilinear elliptic PDE. Variational methods: open problems, recent progress, and numerical algorithms, 201--237, Contemp. Math., 357, Amer. Math. Soc., Providence, RI, 2004.

 

6.

Neuberger, John M.; Rice, Dennis R., Jr.; Swift, James W. Numerical solutions of a vector Ginzburg-Landau equation with a triple-well potential. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 11, 3295--3306.

 

7.

Castro, Alfonso; Dr‡bek, Pavel; Neuberger, John M. A sign-changing solution for a superlinear Dirichlet problem. II. Proc. of the Fifth Miss. State Conference on Diff. Eq. and Computational Sim. (Mississippi State, MS, 2001), 101--107 (electronic), Electron. J. Differ. Equ. Conf., 10, Southwest Texas State Univ., San Marcos, TX, 2003.

 

8.

Cossio, Jorge; Lee, Sheldon; Neuberger, John M. A reduction algorithm for sublinear Dirichlet problems. Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000). Nonlinear Anal. 47 (2001), no. 5, 3379--3390.

 

9.

Costa, David G.; Ding, Z. ; Neuberger, John M. A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains. J. Comput. Appl. Math. 131 (2001), no. 1-2, 299--319.

 

10.

Neuberger, John M.; Swift, James W. Newton's method and Morse index for semilinear elliptic PDEs. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), no. 3, 801--820.

 

11.

Neuberger, John M. A sign-changing solution for a superlinear Dirichlet problem with a reaction term nonzero at zero. Nonlinear Anal. 33 (1998), no. 5, 427--441.

12.

Castro, Alfonso; Cossio, Jorge; Neuberger, John M. A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems. Electron. J. Differential Equations 1998, No. 02, 18 pp. (electronic).

 

13.

Castro, Alfonso; Cossio, Jorge; Neuberger, John M. A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J. Math. 27 (1997), no. 4, 1041—1053.

 

14.

Castro, Alfonso; Cossio, Jorge; Neuberger, John M. On multiple solutions of a nonlinear Dirichlet problem. Proceedings of the Second World Congress of Nonlinear Analysts, Part 6 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 6, 3657--3662.

 

15.

Neuberger, John M. A numerical method for finding sign-changing solutions of superlinear Dirichlet problems. Nonlinear World 4 (1997), no. 1, 73--83.